EECS 149/249A: Smart AC Lighting

Milo Darling, Rohan Sagar, Henry Teng, Daniel Zhang
milodarling@berkeley.edu,rohansagar4@gmail.com,hteng1995,daniel.zhang@berkeley.edu

ABSTRACT

This report explains in detail the design, implementation, and eval-
uation of a "smart" AC lighting system. The system will employ
a Bluetooth Low Energy network of Nordic NRF52 Development
Boards linked to a central Raspberry Pi Zero to allow a user to
control the dimness of any given lightbulb in the system. A website
will input user commands, and various other sensors will provide
the "smart" features of our design.

1 INTRODUCTION

Problem and Goals

Energy efficiency in the common household is a theme that has
become strong in the past few decades, and the advent of smaller,
cheaper, and powerful computing units have helped this field grow
quickly. Our group wanted to approach a common problem seen in
the household: how to easily control the brightness of each room
in a house, beyond traditional light switches and slide controls.
We want a system that can be deployed in multiple rooms in a
house, where the user has the ability to control each room from
a central hub and enable "smart" features such as motion detec-
tion and light tracking to control lighting beyond direct human
command. Our system will be judged according to three standards:

(1) Timeliness: Our system must have minimal latency, so that
the user does not observe noticeable lag in system response
to any user input

(2) Accuracy: Our system must not output unexpected response
to user or sensor input

(3) Scalability: Our system should be easily deployable in multi-
ple rooms to control multiple lights

Background: AC Dimming

The fundamental concept that underlies our project is AC phase
control, which is used to control the amount of power going into
an AC circuit (in this case, a light bulb). We refer to Figure 1 to
illustrate how AC phase control works, and how we can use it in
our project:

EECS 149/249A, December 14, 2018, UC Berkeley
2018. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Gate Voltage
Output Voltage
Input Voltage

Gate Voltage volts)
°
°

Mains Voltage (volts)

Figure 1: AC Phase Control (Arduino Playground)

A typical AC phase control module employs a Triac along with
a zero-crossing detector. The zero-crossing detector will throw a
pulse whenever the AC signal crosses zero, during which the Triac
will wait a certain amount of time t1 before opening its gate and
letting the input voltage through for the rest of the period. The
length of t1 is inversely related to the brightness of the light bulb
— the larger t1, the less averaged power passes to the bulb, and
therefore the more dim the bulb is.

The microcontroller that we use will detect the zero crossing
signal, and after a desired amount of time, will command the Triac
gate to open.

Relevance to Course

Our system has to interface with various input/output peripherals,
including a variety of sensors; both digital and analog. Not includ-
ing the required use of interrupts and timers in actuating the AC
dimming module, the microcontroller will have to implement a
schedule of periodic tasks such as interfacing with sensors, sending
information over BLE, and making decisions about how to control
the lights. We also had to implement scheduled periodic tasks on
the Raspberry Pi, avoiding deadlocks or multiple accesses of the
same resource. The modelling of our system will be aided by finite
state machine tools, as taught in class, and the system will be de-
ployed across a wireless network, Bluetooth Low Energy, as well
as WiFi.

2 DESIGN AND IMPLEMENTATION

System Architecture

To best illustrate the various components and connections in our
system, we will refer to Figure 2 below, which illustrates our overall
system architecture:

https://doi.org/10.1145/nnnnnnn.nnnnnnn

EECS 149/249A, December 14, 2018, UC Berkeley

RF Buckler

nRF Buckler

Momentary
Toggle

Momentary
Toggle

Light Sensor

GUI for User Input:

Schadule
Dimness Sider

Alsa; Canfigurations.

Figure 2: System Architecture

Our system will accept information from various user/sensor
inputs:

(1) Schedule [Website]: Minimum/Maximum dimness in a time
interval

(2) Virtual Slider [Website]: a two-way virtual slider, in-taking
the desired dimness, but also displaying the current dimness
of a given light

(3) Manual Toggle Switch [NRF52]: an analog sensor, similar to
a car-window toggle switch with three states: up, down, and
off, which increments/decrements the dimness of a given
light

(4) Ambient Light Sensor [NRF52]: a digital sensor that outputs
the ambient light in lux

(5) PIR Motion Detector [NRF52]: an analog infrared sensor that
detects motion

In addition to the above Schedule and Virtual Slider, the website
will allow users to toggle two "smart" features:

(1) Motion Detection: when the PIR sensor detects motion, the
room will be lit up, and after a period of inactivity, will be
shut down

(2) Ambient Light Tracking: a NRF52 will set an ambient light
point, and will use the ambient light sensor to track that
set-point. The set-point can be shifted after initial setting.

The AC Dimming module will be directly actuated by the Nordic
NRF52 Development Board, as provided in the course. Each of these
AC Dimming - NRF52 pairs acts as a peripheral in our BLE network;
each reporting to a central device, a Raspberry Pi Zero, which hosts
a server, written in Django. The RPi must also interface with a
website, which will be the portal through which the user can input
their commands.

The NRF52 must poll 3 sensors (see Figure 2) in order to generate
its own "local" dimness command, which will be passed to the AC
Dimming module. The NRF52 must also receive "global” commands
from the Raspberry Pi. These global commands are sent to the
NRF52, which then must resolve both commands to create a single
command to actuate the AC dimmer with.

Milo Darling, Rohan Sagar, Henry Teng, Daniel Zhang

The RPi must resolve the user commands from the website to
form a single global dimness command, which is sent to the NRF52,
and must also update the website with the most current dimness
setting at a NRF52.

Bluetooth LE. A custom BLE lighting service was created to hold
all essential information needed to track user inputs, commands,
and sources of dimness change (see Figure 3).

Lighting Service

Characteristic:

1: Configuration (Light
Tracking/Motion Enabled)

2: Source of Dim. Change
3: Dimness Setting

Figure 3: Custom Lighting Bluetooth LE Service

This service contains all information required for the NRF52 to
respond to global command and/or perform local decisions and for
the RPi to update the website and its server.

Design of NRF52 Machine. The design for the NRF52 is by far the
most complicated for any component of the system. We detail its
design with a FSM and a decision table:

In C code, all of the states of the FSM in Figure 4, except for
INITIALIZE and GLOBAL_DECISION are implemented in a while-
loop. The FSM is both timer and event-driven. The polling tasks that
are abstracted into the state POLL_SENSORS are linked to software
timers, in which timer interrupts will set condition variables in
the main NRF52 code, signifying that a sensor should be polled.
However, as seen by the preemptive transitions in Figure 4, the
main NRF52 code is interrupted when the BLE service receives new
data from the Raspberry Pi, and carries out that global command
immediately.

After initialization, on each iteration of the main while loop,
the NRF52 will check the sensor condition variables, and poll each
"ready” sensor. After polling any "ready” sensors, the NRF52 will
follow Table 1, using inputs from the BLE service including: a user
configuration (turn on Motion Detection and/or Light Tracking),
and the source of the change and the sensor value itself, to generate
a decision. Table 1 states that global commands (preemptive in
nature) have top priority, but the manual toggle, which will generate
a local decision, is of equivalent priority due to high sensor polling
frequency. This is an intentional design choice, as a user would
expect a light switch to respond immediately to their toggling. More
details on the implementation of Table 1 can be seen in Challenges.

Design of Raspberry Pi Server & Database. The backend of our
project is a Django server with WebSockets and a RESTful APL
In order to change the dim level quickly, we use WebSockets.
Upon loading the website, a WebSocket is established between the
server and client, and any change of the slider causes the client
socket to send the new light level to the server. When the server
receives a new light level, it saves the new light level to a database,

EECS 149/249A: Smart AC Lighting

EECS 149/249A, December 14, 2018, UC Berkeley

Input: Dimgopa € {Absent,0 — 255} FROM BLE, (configiignt, configmotion) € {Absent, Present} FROM BLE

Output: command € Z = {0 — 255} TO AC DIMMER & BLE, source € {slider, schedule, light, manual, motion} * TO BLE

Variables: Lightset point € R, Dimcyrrent € Z = {0 — 255}, Increment € Z, Direction € {Up, Down}, Dimchangea = {1,0}, source*

*global sources (slider & schedule) are only read from BLE, local sources (light, manual, motion) are generated in POLL SENSORS and written to BLE

DiMgiopa ! = Absent /
Dimgigba: = Absent, source = {read from BLE}

true / command

Global
Decision, 1

true / command

Decision, 3

Global
Decision, 2

o true command

Global
Decision, 4

Figure 4: FSM for NRF52 Component

Table 1: Decision and Priority Table for NRF52

Input Output
Priority ~Configuration Direction Dimgopal Source Command Source
1 N/A N/A Z ={0-255} App-Slider Dimness = Global Set App-Slider
1 N/A N/A Z ={0—255} Schedule Dimness = Global Set Schedule
1* N/A Up N/A Manual Dimness = Dimness - Increment ~ Manual
1* N/A Down N/A Manual Dimness = Dimness + Increment Manual
2 Motion: ON, Light: N/A N/A N/A Motion Dimness = Prev. Dimness Motion
3 Motion: N/A, Light: On ~ Up N/A Light Dimness = Dimness - Increment ~ Light
3 Motion: N/A, Light: On Down N/A Light Dimness = Dimness + Increment Light

to be sent to the Buckler by our BLE task (explained below in Design
of Communication Pathways).

We also have RESTful endpoints for specific features, like sched-
uling. For these features, the information and data models are saved
in a separate database from the bluetooth task database. This allows
us to use these features without having to persist a connection
and a separate websocket. The schedule endpoints allow for CRUD
operations, and utilize a crontab library to schedule a python script
that communicates via BLE to turn on a light.

Design of Website. The web app was designed to be the only hub
an end user needs to access to control their lights. In the web
app, users can add new Bucklers as soon as they are booted up,
giving them a user-readable name like "Living Room." Users can
also directly change the light level of any of their configured lights,
set a dimming schedule for the lights, and can enable/disable the
"smart" features for each light in their network.

For the website, we took advantage of free and open web design
aids, utilizing Bootstrap to quickly create an attractive website, and
DHTMLX Scheduler, a free HTML calendar library, to implement
the scheduling feature. We used Django’s HTML templating and a
REST API to load the data about the current light on the website,
and used WebSockets and AJAX requests to send new data. We used

WebSockets for their speed when necessary, and AJAX elsewhere
for its simplicity.

Dashboard
Current setting

Schedule

Configuration

3Dec 2018 -9 Dec 2018

Figure 5: Screenshot of Website

Design of Communication Pathways. Initially, we had used Django
endpoints to communicate with the lights. It was easy to integrate
directly into the project; however, we found that repeated AJAX re-
quests, in addition to having to fetch the correct BLE device, create

EECS 149/249A, December 14, 2018, UC Berkeley

the characteristic, and write it in each request created too much
latency, and not enough control. For example, if we received an
excessive number of server requests, we could only in turn send
an excessive number of BLE requests. In order to improve commu-
nication, we put BLE in a separate task on the Raspberry Pi. The
BLE task would repeatedly check a SQLite database for new infor-
mation, i.e. a modified brightness level. If a change was found, the
task would write the new information to the corresponding Buckler
repeatedly and quickly. While not writing, the BLE task scans and
connects to bucklers, reads their light levels, and saves them to
the database. With this design, the BLE connection is abstracted
away from the server, and the server only handles reads and writes
locally on the database. This also made it easy to implement sched-
uled dimming, as the scheduled task simply needs to write to the
database, and the BLE task will handle the rest. Similarly, the server
requests are abstracted away from the BLE communication. With
BLE concentrated in one task, we were able to control the speed at
which the Pi reads and writes from the Bucklers, improving overall
latency significantly. This task also allowed us to continuously scan
for and connect to new and previously connected Bucklers, making
it resilient to random disconnects, power outages, and other issues
that can arise with BLE.

Figure 6: Communications Diagram

Hardware and Software
Hardware. The following hardware was used for our project:
(1) Raspberry Pi Zero
(2) NRF52 Development Boards + Berkeley Buckler
(3) MAX44009 12C Ambient Light Sensor (Incl. on Buckler)
(4) Momentary Toggle Switch (Amazon Link)
(5) EKMB1101111 PIR Sensor (Supplied by Staff)
(6) AC Dimming Module (Amazon Link)
(7) Misc. cables, light bulbs, light sockets, etc.

Software. The first code written for the project was C code for the
NRF52 Buckler to interface with the various sensors and peripherals.
Much code was borrowed from lab work concerning the use of
GPIOs, setting timers, and using interrupts, but all original work of
our team. The only sensor that required additional work outside of
the lab curricula was the 12C Ambient Light Sensor. For this, code
was originally written based on the code written by staff for the
12C accelerometer on the Buckler, but we ultimately settled for the
Staff-written MAX44009 library.

The Django server and SQLlite database were written by the
team. The BLE implementation on the RPi was written by the team,
using the BluePy Python library, and the task was run by systemd.
The BLE implementation on the NRF52 was based extensively on
the Staff example, but with slight adjustments to advertising, our
own read/write functions and adding our own service.

Milo Darling, Rohan Sagar, Henry Teng, Daniel Zhang

Code to implement the Django Web Socket connection between
the website and server was also written using the Django channels
library.

Additional endpoints for certain features, such as scheduling,
were implemented with the Django RESTful framework. Also uti-
lized in implementing the schedules feature is the python-crontab
library, used to programmatically create Cron jobs. These features
were not required to have a persistent connection, and could afford
a higher latency.

Photos. With reference to Figure 2, each peripheral of our network
is comprised of a nRF52 + Buckler + AC Dimmer. For demonstra-
tion, this is packaged in an enclosure that exposes the sensors and
protects the electronics, seen below in Figure 7:

Figure 7: Peripheral Component in Enclosure (Opened Lid)

Our demo showcased a network of 3 peripheral, one central
device, and 1 website:

= o

Figure 8: Full Demonstration (Raspberry Pi Server Obscured
Behind Computer Screen

https://www.amazon.com/Podoy-Momentary-Switch-Toggle-Position/dp/B013OZY16G/ref=sr_1_10?ie=UTF8&qid=1544402509&sr=8-10&keywords=momentary+toggle+switch
https://www.amazon.com/GENUINE-RobotDYN-Programmable-Controller-Compatible/dp/B071X19VL1/ref=sr_1_1_a_it?ie=UTF8&qid=1544402764&sr=8-1&keywords=AC+dimming+module

EECS 149/249A: Smart AC Lighting

Challenges

NRF52 Priorities and Smart Features. The NRF52 must implement the
priorities of Table 1 and also accommodate the two "smart" features
listed in Page 2. We implemented the priorities tabulated in 1 by
polling the sensors at different frequencies: the Manual Switch is
polled the most frequently, followed by the motion sensor, followed
by the light sensor. We chose these priorities with response time in
mind - a manual switch when toggled should respond immediately.
Motion detection, when enabled, should react reasonably quick to
motion, and light tracking, when enabled, should react the slowest
to avoid erratic oscillations in the open-loop tracking of the set-
point.

However, issues arose in implementing the smart features. For
one, we noted that the PIR sensor, due to its very wide field of view,
would often give many "false positives" in our crowded lab setting.
This would mean that when motion detection was activated, which
turns on the lights upon any motion, the light would turn on even
when someone did not walk directly in front of the sensor. We
corrected this by adding a 8-bit buffer, which must read all "1"’s in
order for the light to turn on. This, however, means that we have at
a minimum 8 # f54 e ms latency in the motion detection reaction.
As suggested by the GSIs during our demo, it would be helpful
to correct our implementation, such that the light turns on more
easily.

For both the light tracking and motion detection features, we had
to determine what set-point each feature would either be tracking
or setting the light to, respectively. For light tracking, we save an
initial set-point to a static variable when the feature is activated on
the website, and then update that variable with any new dimness
commands that are not due to the light sensor. This way, we can
account for a situation where the user, for example, increases the
brightness in a room after engaging light tracking, and desires
to keep that brightness. For motion tracking, we also use a static
variable to keep track of any dimness changes attributed to not the
motion sensor. This is then the value that the motion feature will
set the lights to from a 0 brightness state when motion is sensed.

Disconnect between Ambient Light and Bulb Dimness. A concept
that was not included in our design was this disconnect between
the brightness of a light bulb and the ambient light in the room.
This is a function that is critical to a more realistic light-tracking
smart feature, but requires a model of the environment the system
is deployed in. This is outside the scope of our project, but we
remedy this problem during our evaluation trials by placing the
bulb closer to the light sensor, so that a change in dimness of the
bulb is easily caught by the ambient light sensor.

3 EVALUATION

We evaluate our project by the three metric introduced in the sec-
tion: Problem and Goals, which are: Timeliness, Accuracy, and Scal-
ability. For reference, our a video of our demo is available at: Link
to Demo Video

Timeliness. This was a critical section of our project, as the bright-
ness of a room is something that many people are accustomed
to having direct and rapid control over in their households or

EECS 149/249A, December 14, 2018, UC Berkeley

workspaces. Since much of our design and implementation consid-
ered the user in mind, this standard was met rather well (for details,
see the Challenges section). The manual switch on each peripheral
reacts near instantaneously, with each toggle up or down reflected
by the bulb immediately after the input is given. The smart features
(a.k.a. the PIR sensors and light sensor) have latency on the order
of seconds, but that is by design due to the nature of the feature
itself, and is to be expected. On the website side, the schedule has
latency on the order of a few seconds, with a command stored in
the database being actuated on within seconds of the time stamp.
The virtual slider was the greatest challenge with the least success.
A slow press-and-slide of the slider results in reasonable latency
(on the order of a second or two), as each value read from the slider
having reasonable time to be sent to the NRF52 before the next
value is read. This pathway becomes flooded if the slider is moved
faster, but the results are still reasonable, with visible levels seen
in the brightness of the bulb, but latency still on the order of a few
seconds.

Accuracy. We validated the smart features independently. The mo-
tion detection feature triggering as expected (with a delay due to
the 8-bit buffer required for the PIR sensor) and then turning off
the lights after a duration of time of stillness. The light-tracking
feature tracks set-point as expected, but a lacking is lack of sen-
sitivity of the feature to the bulb brightness, which is due to the
disconnect between ambient light and bulb brightness (as discussed
in Challenges). However, this is acceptable, as we are more focused
on the proper functioning of the logic of the local decisions. Both
the motion detection and light tracking set points were also verified
to be updated as expected.

When both the ambient light tracking and motion detection were
enabled, the two features would sometimes conflict. For example,
the motion tracking would turn off the light, and then the light
tracking would start to turn it back up, because it sensed that the
room got darker. Additionally, there were some cases where we
were not sure the best user experience decision. These edge cases
were not something we were able to extensively test and prevent
in our time frame.

In addition, the NRF52 was verified to respond accurately to
global decisions. The schedule was verified by setting schedule
min/max values from the website, and the NRF52 reacted correctly.
The virtual slider also responded correctly, with its range scaled to
match the real limits of the dimmer.

Scalability. As seen in Figure 8, we can see that we easily acco-
modated 3 peripherals to one central device in our system. We
could have easily added more, with each device simply requiring
to be scanned and added into the database through the website. In
addition, each NRF52 could potentially control more AC dimmer
modules, and therefore could control more lights (albeit all with
the same dimness), with the limitation being the hardware — how
many GPIO pins there are on the Buckler.

4 DISCUSSION

More work needs to be done in improving the communication
pathway. While we feel we came up with an elegant and relatively
fast solution, we can continue to tweak the update intervals in order

https://www.youtube.com/watch?v=EAq8xjruL48&feature=youtu.be
https://www.youtube.com/watch?v=EAq8xjruL48&feature=youtu.be

EECS 149/249A, December 14, 2018, UC Berkeley

to further improve communication speeds from the website all the
way to the Buckler.

In addition, some more testing needs to be done to ensure the
system response is accurate under extreme situations, and that the
system is robust under those situations. While the demonstration
was successful, more complex user input traces need to be evalu-
ated. For instance, we did not test situations where all features and
sensors were engaged at exactly the same point in time. We leverage
the accuracy and robustness of our system on slight imperfections
in the timing and scheduling of our tasks at all levels of the system
(globally and locally).

This project, all in all, has great potential not simply in the
consumer sphere. In initial scoping of our project, it became very
clear that there exist more application of "smart lighting" in the
public sphere, such as street lighting. Many cities across the US
have investigated upgrading their their street lighting to be more
energy efficient and also more "smart" in the way of creating safer
communities. For example, one "smart" way of making a safer
community is to make the street lights in the immediate vicinity
around a person brighter than other lights farther from them. This
sort of extension of our project sees more powerful implications
than merely household deployment, and a toy-project like ours
exposes the issues that may arise in deploying such a system, such
as in the areas of timeliness, accuracy, and scalability; which will
all have much greater implications at the public scale.

Milo Darling, Rohan Sagar, Henry Teng, Daniel Zhang

	Abstract
	1 Introduction
	2 Design and Implementation
	3 Evaluation
	4 Discussion

